Difference between revisions of "FormulaAI Functions"
(→'set_var' function) |
(→'is_village' function) |
||
Line 476: | Line 476: | ||
This function will return a list of locations of shrouded hexes. | This function will return a list of locations of shrouded hexes. | ||
+ | |||
+ | === 'is_unowned_village' function === | ||
+ | |||
+ | <boolean> = is_unowned_village( <map or ai.map> , <location> ) #1 | ||
+ | |||
+ | <boolean> = is_unowned_village( <map or ai.map> , <coordinate x> , <coordinate y> ) #2 | ||
+ | |||
+ | The first argument is always a 'map' - member of the ai which provides information about the gamemap. | ||
+ | |||
+ | This will return true if we don't own the village (i.e it is unowned, owned by an ennemy, or owned by al allie) | ||
+ | |||
=== 'is_village' function === | === 'is_village' function === |
Revision as of 21:06, 15 March 2009
Contents
- 1 Overview
- 2 core functions
- 2.1 'abs' function
- 2.2 'choose' function
- 2.3 'contains_string' function
- 2.4 'debug_print' function
- 2.5 'dir' function
- 2.6 'filter' function
- 2.7 'find' function
- 2.8 'head' function
- 2.9 'if' function
- 2.10 'index_of' function
- 2.11 'keys' function
- 2.12 'map' function
- 2.13 'max' function
- 2.14 'min' function
- 2.15 'rgb' function
- 2.16 'size' function
- 2.17 'sort' function
- 2.18 'sum' function
- 2.19 'switch' function
- 2.20 'tolist' function
- 2.21 'tomap' function
- 2.22 'values' function
- 2.23 'wave' function
- 3 AI specific functions
- 3.1 Base functions
- 3.2 Evaluation
- 3.3 Gamemap functions
- 3.3.1 'adjacent_locs' function
- 3.3.2 'close enemies' function
- 3.3.3 'distance_between' function
- 3.3.4 'distance_to_nearest_unowned_village' function
- 3.3.5 'defense_on' function
- 3.3.6 'find_shroud' function
- 3.3.7 'is_unowned_village' function
- 3.3.8 'is_village' function
- 3.3.9 'loc' function
- 3.3.10 'shortest_path' function
- 3.3.11 'simplest_path' function
- 3.3.12 'unit_at' function
- 3.3.13 'nearest_keep' function
- 3.3.14 'nearest_loc' function
- 3.3.15 'unit_moves' function
- 3.3.16 'units_can_reach' function
- 3.4 Recruitment
Overview
Syntax used to explain functions usage in this document is:
<result> = <function name>( <comma-separated list of parameters> [, <comma-separated list of optional parameters] )
Function may return <result> as:
- <variable> - any of the supported variable types
- <boolean> - false ( 0 or null ) or true ( 1 )
- <unit> - unit
- <location> - place on a gamemap
- <action> - object, which, if later passed to 'move= ' as the result of formula evaluation, make the AI perform a desired action.
- <result> - any of the above
Also function may return only single argument, or be able to return a whole list or a map.
There are a wide variety of functions which can be used to accomplish many different tasks. You can also define your own functions.
core functions
'abs' function
<number> = abs( <input number> )
Function returns absolute value of an <input number>, for example
abs( -5 )
will return 5.
'choose' function
<result> = choose( <input list> , [ <string> ,] <formula> )
This function evaluates <formula> for each item in the <input> (which can be a list ro a map). Will evaluate to the one item which <formula> gave the highest value. For example:
choose(my_units, level)
gives back the unit with the highest level.
Note: The implicit input when evaluating a mapping/filtering function's <formula> component will be that specific item under evaluation (in this example one of "my_units"), and it can be explicitly referenced as 'self' when necessary. Optional <string> paremater indicates what word used in <formula> is equivalent to 'self'.
When evaluating the map data type, we can reference to each key by 'key' and each value by 'value'. For example:
choose( [ 'elf' -> 10, 'dwarf' -> 20 ], value )
Will return a key-value pair
{ key->'dwarf', value->20 }
'contains_string' function
<boolean> = contains_string( <string>, <key> )
Returns 1 if <key> can be found withing <string>, 0 otherwise
contains_string( 'Testing', 'ing' )
returns
1
'debug_print' function
<formula> = debug_print( [ <optional string> ,] <formula> )
This function can be used for debging the formulas. It takes formula, writes output to the console and return it unchanged. For example:
debug_print( [ 1, 2, 3 ] )
will result in printing to the console
[ 1, 2, 3 ]
Return value is the same.
We can specify optional parameter that helps to distinguish what each of debug_print outputs is (useful if we have multiple debug_print functions):
debug_print( 'My array: ', [ 1, 2, 3 ] )
will write in the console:
My array: [ 1, 2, 3 ]
And return
[ 1, 2, 3 ]
'dir' function
<list of names> = dir ( <input object> )
This function return list with all names of <input object's> members. For example:
dir( my_leader )
will result in output:
[ 'x', 'y', 'loc', 'id', 'leader', 'hitpoints', 'max_hitpoints', 'experience', 'max_experience', 'level', 'total_movement', 'movement_left', 'side', 'is_enemy', 'is_mine']
This command is useful in formula command line, to get information about members of different type of data. To get list of members of the ai, type:
dir( self )
'filter' function
<result> = filter( <input>, [ <string> ,] <formula> )
This function will run <formula> on each item in the <input> (which can be a list or a map). Will evaluate to a <result> which only contains items the <formula> was true for. Optional <string> indicates what word used in <formula> is equivalent to 'self'. For example:
filter(my_units, hitpoints < max_hitpoints)
will return all of your units which have less than maximum hitpoints. For instance this could be used if looking for candidates for healing.
'find' function
<result> = find( <input>, [ <string>,] <formula> )
This function will run <formula> on each item in the <input> (which can be a list or a map) and will return a first item for which <formula> was true. Optional <string> indicates what word used in <formula> is equivalent to 'self'. For example:
filter(units, id = 'Elvish Archer' )
will return first unit with id equal to 'Elvish Archer'.
'head' function
<variable> = head( <list of variables> )
Head returns first item from the <list of variables>, for example
head( [ 5, 7, 9] ) #returns 5 head( [ 'Orc', 'Human' ] ) #returns 'Orc'
'if' function
<result> = if( <condition> , <if true> , <otherwise> )
If the <condition> parameter is true, the function will evaluate to being equal to its second input ( <if true> ), otherwise it will evaluate to being equal to its third input ( <otherwise> ).
For instance, an AI that recruits Wolf Riders on the first turn, and Orcish Grunts thereafter might look like this:
move="if(turn = 1, recruit('Wolf Rider'), recruit('Orcish Grunt'))"
'index_of' function
<result> = index_of( <value>,<list> )
This function will return the first index where <value> can be found in <list>
It will return -1 if the value is not found
'keys' function
<result list> = keys( <input map> )
Extract key values from a <input map> and return them as a <result list>
keys( [ 'Elvish Fighter' -> 50, 'Elvish Archer' -> 60 ] )
Returns
[ 'Elvish Fighter', 'Elvish Archer' ]
'map' function
<result> = map( <input> , [ <string> ,] <formula> )
This function will run <formula> on each item in the <input> (which can be a list or a map), and evaluate to a new <result> list, or a map, which contains the same number of items as in <input>, with the formulas run on each item. Optional <string> indicates what word used in <formula> is equivalent to 'self'. For example:
map( [10,20], self*self)
and
map( [10,20], 'value', value*value)
both will result in [100, 400]. Formula:
map(my_units, hitpoints)
will give a list back with the number of hitpoints each unit has. This is more useful in conjunction with other functions.
map( [ 'elf' -> 10, 'dwarf' -> 20 ], value*2 )
Above will produce [ 'elf' -> 20, 'dwarf' -> 40 ]. Note that in case of a map data type, 'map' function can modify only the value.
'max' function
<number> = max( <list of numbers> )
Function will return maximal number from a list,
max( [ 2, 8, -10, 3] )
will return 8.
'min' function
<number> = min( <list of numbers> )
Function will return minimal number from a list,
min( [ 3, 7, -2, 6] )
will return -2.
'rgb' function
<value> = rgb( <red>,<green>,<blue> )
Function will return a single int which encodes the color defined with the three parameters red,green,blue
The parameters must be in the range [0..99]
'size' function
<number> = size( <list of variables> )
This function returns how many variables are stored in a list:
size( [ 5, 7, 9] ) #return 3 size( [ 'Archer', 'Fighter' ] ) #return 2
'sort' function
<result list> = sort( <input list> , <formula> )
This function evaluates to a <result list> sorted according to the comparison <formula> for each item 'a' and its successor 'b'. For instance, sorting units according to hitpoints would be done by:
sort( my_units, a.hitpoints > b.hitpoints )
'sum' function
<number> = sum( <list of numbers> )
This function evaluates to the sum of the items in the <list of numbers>. For example
sum( [ 2, 5, 8] )
returns 15, and:
sum( map( my_units, max_hitpoints - hitpoints ) )
finds the total damage your units have taken.
'switch' function
<result> = switch( <variable>, <value 1>, <outcome 1>, ... , <value N>, <outcome N> [, <default outcome> ] >
Switch funtion takes variable, and checks if it is equal to any of the specified <values>. If matching value is found, <outcome> assigned to it is returned, if not, then function returns either <default outcome> (if specified) or null.
'tolist' function
<list> = tolist( <input map> )
This function takes map and return a list of key-value pairs objects. For example:
tolist( [ 'Elf' -> 10, 'Dwarf' -> 20] )
will return:
[{key->'Elf',value->10}, {key->'Dwarf',value->20}]
'tomap' function
<map> = tomap( <input list A> [, <input list B> ] )
This function takes one or two lists as input and returns a map. If only one list is specified, then function will evaluate this list, count how many simmilar elements are withing this list, and return a map with keys being these elements, and values being a number representing of them list contains, For example:
tomap( ['elf', 'dwarf', 'elf', 'elf', 'human', 'human' ] )
will return:
[ 'elf' -> 3, 'dwarf' -> 1, 'human' -> 2 ]
If two lists are specified, then elements of the first one will be used as a keys, and elements of second one as a values, when creating a output map. Note that these input lists must be of the same length.
tomap( [ 'elf', 'dwarf' ], [10, 20] )
will result in:
[ 'elf' -> 10, 'dwarf' -> 20 ]
'values' function
<result list> = values( <input map> )
Extract values assigned to keys from a <input map> and return them as a <result list>
values( [ 'Elvish Fighter' -> 50, 'Elvish Archer' -> 60 ] )
Returns
[ 50, 60 ]
'wave' function
<value> = wave( <value> )
given a value V, returns
sin(2*pi/(V%1000/1000) )
AI specific functions
Base functions
'attack' function
<action> = attack( <attacker's position>, <destination>, <attack location> [, <weapon> ] )
The first three parameters are locations. At the begining, unit which is standing at <attacker's position> is moved to <destination> place. Then, from that place unit is attacking unit which stands in place marked by <attack location>. Fourth optional parameter is number, and indicates which weapon attacker should use - if not specified, best possible weapon is chosed automatically.
'fallback' function
<action> = fallback( [<name>] )
This function allows to chose different AI or to human player, who will take control over side untill the end of current turn. For example:
fallback()
will transfer control to the default C++ AI. You can specify a name of different AI (for example python_ai) to transfer control to it. If you want to give control to the player, use:
fallback( 'human' )
'get_unit_type' function
<unit> = get_unit_type( <unit name> )
Function returns unit_type object of desired type, for example:
get_unit_type( 'Mage' )
will result in returning unit_type of a Mage.
'move' function
<action> = move( <source> , <destination> )
Moves unit from <source> to <destination> and sets unit movement to 0. For example unit formula like:
move(my_leader.loc, loc(my_leader.loc.x, my_leader.loc.y - 1) )
will make leader move one hex north. Leader's movement points will be reset to 0.
'move_partial' function
<action> = move_partial( <source> , <destination> )
Moves unit from <source> to <destination>. For example unit formula like:
move(my_leader.loc, loc(my_leader.loc.x, my_leader.loc.y - 1) )
will make leader move one hex north.
'set_unit_var' function
<action> = set_unit_var( <key>, <value> , <location>)
This action creates a new variable which is attached to the unit at <location>
'set_var' function
<action> = set_var( <key> , <value> )
This action sets new variable, for example:
set_var( 'Number one' , 1 )
Will create variable with name 'Number one' and assign 1 to it.
Evaluation
'calculate_outcome' function
[<list of outcoms>] = calculate_outcome(<attacker> ,<attacker location> , <defender location> , [<weapon>] )
returns a list of possible outcomes when <attacker> attacks the unit at <defender location> from <attacker location>
if no weapon is provided, it will return for the weapon considered the best by the C++ weapon choice algorithm (the one used to select default weapon in normal games)
'chance to hit' function
<number> = chance_to_hit( <unit> , <location> )
This function returns how possible ( in % ) it is to hit given <unit> in a specific <location>. For example:
chance_to_hit( my_leader , my_leader.loc )
shows how easy it is to hit your leader has in a place he is currently standing on.
'evaluate_for_position' function
<variant> = evaluate_for_position(<position>, <formula> )
Returns the result of <formula> as if <formula> was evaluated with a position of <position> instead of the current position
'max_possible_damage' function
<number> = max_possible_damage( <attacking unit> , <defending unit> )
Function returns highest possible damage that <attacking unit> can inflict to <defending unit>.
'max_possible_damage_with_retaliation' function
<number> = max_possible_damage_with_retaliation( <attacking unit> , <defending unit> )
Function returns an array:
[ <attacker_melee>, <attacker_ranged>, <defender_melee>, <defender_ranged> ]
in which first two elements are highest possible damage that <attacking unit> can inflict to <defending unit> with melee and ranged attacks, and latter two elements are highest possible damage that <defending unit> can inflict to <attacking unit> also with melee and ranged attacks.
'movement_cost' function
<number> = movement_cost( <unit> , <location> )
This function returns movememtn cost of given <unit> in a specific <location>. For example:
movement_cost( my_leader , my_leader.loc )
shows what movement cost your leader has in a place he is currently standing on.
Gamemap functions
'adjacent_locs' function
<loc list> = adjacent_locs( <location> )
Returns a list containing the list of the six locations adjacent to <location>
'close enemies' function
<units list> = close_enemies( <location> , <distance> )
This function gets a list of enemies in the given or smaller distance from the location. For example:
close_enemies(loc(10,10), 5)
gives back a list of enemies in the distance of 5 tiles or less from the tile (10, 10).
'distance_between' function
<number> = distance_between( <location A> , <location B> )
This function returns distance (in hexes) between <location A> and <location B>. For example:
distance_between( loc( 1, 1) , loc( 3, 3) )
will return 3.
'distance_to_nearest_unowned_village' function
<number> = distance_to_nearest_unowned_village( <location A> )
This function returns distance (in hexes) between <location A> and nearest unowned village.
'defense_on' function
<number> = defense_on( <unit> , <location> )
This function returns defense rate of given <unit> in a specific <location>. For example:
defense_on( my_leader , my_leader.loc )
shows how good defense your leader has in a place he is currently standing on.
'find_shroud' function
<locations list> = find_shroud()
This function will return a list of locations of shrouded hexes.
'is_unowned_village' function
<boolean> = is_unowned_village( <map or ai.map> , <location> ) #1
<boolean> = is_unowned_village( <map or ai.map> , <coordinate x> , <coordinate y> ) #2
The first argument is always a 'map' - member of the ai which provides information about the gamemap.
This will return true if we don't own the village (i.e it is unowned, owned by an ennemy, or owned by al allie)
'is_village' function
<boolean> = is_village( <map or ai.map> , <location> ) #1
<boolean> = is_village( <map or ai.map> , <coordinate x> , <coordinate y> ) #2
The first argument is always a 'map' - member of the ai which provides information about the gamemap.
In #1 usage, we put in as a second argument location. In #2, second and third arguments are numbers: coordniates of the certain hex on a map. Function checks if that place is a village, and returns either 1 (yes, it is village) or 0 (no, it isn't village). Example of usage:
is_village( map , loc( 2, 3) )
is_village( map , 2, 3)
Both check, if hex with coordinates 2,3 is a village.
Remember, when using is_village in custom function, you either have to access map by writing 'ai.map', or specify ai as a 'default input'.
'loc' function
<location> = loc( <X number>, <Y number> )
Function will return a location (pair of numbers) from two given input arguments.
'shortest_path' function
<list of locations> = shortest_path( <location A> , <location B> [, <unit location> ] )
When only 2 parameters are specified, function returns list with all locations that unit standing on <location A> has to move through to get to <location B>. If optional 3rd parameter is specified, it returns list with all locations that unit standing on <unit location> would need to move through to get from <location A> to <location B>. This function takes into account zone of control of enemy units.
'simplest_path' function
<list of locations> = simplest_path( <location A> , <location B> [, <unit location> ] )
When only 2 parameters are specified, function returns list with all locations that unit standing on <location A> has to move through to get to <location B>. If optional 3rd parameter is specified, it returns list with all locations that unit standing on <unit location> would need to move through to get from <location A> to <location B>. This function does not take into account zone of control or enemy units.
'unit_at' function
<unit> = unit_at( <location> )
This function takes only one argument - location, and returns unit if there is one standing in that location, or null otherwise. Example of usage:
unit_at( loc( 4, 4) )
'nearest_keep' function
<keep location> = nearest_keep( <input location> )
Function returns location of nearest keep to the specified <input location>, or null if there is no keep on the map.
'nearest_loc' function
<keep location> = nearest_keep( <input location>, <list of locations> )
Function returns location that is the nearest to <input location>.
'unit_moves' function
<locations list> = unit_moves( <unit location> )
Function returns list of all possible locations which unit standing at <unit location> can reach. If unit can't move, or there is no unit standing at given location, empty list is returned.
'units_can_reach' function
<units list> = units_can_reach( <possible moves list>, <location> )
Function takes as an input list of possible moves ( ai.my_moves for units that belong to AI, or ai.enemy_moves for units that belong to the opponent ) and checks which units from that list can reach <location>.
Recruitment
'recruit' function
<action> = recruit( <unit name> [, <location> ] )
This function results in recruting a unit specifed by <unit name> at first free castle hex, or at given <location>. Function:
recruit('Footpad', loc(3,3) )
will result in recruting Footpad at castle hex with coordinates 3,3.